import numbers
import pickle
from copy import copy
from dataclasses import dataclass
from enum import Enum, auto
from typing import TYPE_CHECKING, Optional, Sequence, Union, cast
import astropy.units as u
import numpy as np
from numpy.polynomial.legendre import leggauss
import lightweaver.constants as Const
from .atomic_table import (AtomicAbundance, DefaultAtomicAbundance,
PeriodicTable)
from .utils import (ConvergenceError, check_shape_exception, get_data_path,
view_flatten)
from .wittmann import Wittmann, cgs
if TYPE_CHECKING:
from .LwCompiled import LwSpectrum
[docs]
class ScaleType(Enum):
'''
Atmospheric scales used in the definition of 1D atmospheres to allow the
correct conversion to a height based system.
Options:
- `Geometric`
- `ColumnMass`
- `Tau500`
'''
Geometric = 0
ColumnMass = auto()
Tau500 = auto()
[docs]
class BoundaryCondition:
'''
Base class for boundary conditions.
Defines the interface; do not use directly.
Attributes
----------
These attributes are only available after set_required_angles has been called.
mux : np.ndarray
The mu_x to return from compute_bc (in order).
muy : np.ndarray
The mu_y to return from compute_bc (in order).
muz : np.ndarray
The mu_z to return from compute_bc (in order).
indexVector : np.ndarray
A 2D array of integer shape (mu, toObs) - where mu is the mu index on
the associated atmosphere - relating each index of the second (Nrays)
axis of a pair of (mu, toObs). Used to construct and destructure this
array.
'''
[docs]
def compute_bc(self, atmos: 'Atmosphere', spect: 'LwSpectrum') -> np.ndarray:
'''
Called when the radiation boundary condition is needed by the backend.
Parameters
----------
atmos : Atmosphere
The atmospheric object in which to compute the radiation.
spect : LwSpectrum
The computational spectrum object provided by the Context.
Returns
-------
result : np.ndarray
This function needs to return a contiguous array of shape [Nwave,
Nrays, Nbc], where Nwave is the number of wavelengths in the
wavelength grid, Nrays is the number of rays in the angular
quadrature (also including up/down directions) ordered as
specified by the mux/y/z and indexVector variables on this
object, Nbc is the number of spatial positions the boundary
condition needs to be defined at ordered in a flattened [Nz, Ny,
Nx] fashion. (dtype: <f8)
'''
raise NotImplementedError
[docs]
def set_required_angles(self, mux, muy, muz, indexVector):
'''
The angles (and their ordering) to be used for this boundary
condition (in the case of a callable)
'''
self.mux = mux
self.muy = muy
self.muz = muz
self.indexVector = indexVector
[docs]
class NoBc(BoundaryCondition):
'''
Indicates no boundary condition on the axis because it is invalid for the
current simulation.
Used only by the backend.
'''
pass
[docs]
class ZeroRadiation(BoundaryCondition):
'''
Zero radiation boundary condition.
Commonly used for coronal situations.
'''
pass
[docs]
class ThermalisedRadiation(BoundaryCondition):
'''
Thermalised radiation (blackbody) boundary condition.
Commonly used for photospheric situations.
'''
pass
[docs]
class PeriodicRadiation(BoundaryCondition):
'''
Periodic boundary condition.
Commonly used on the x-axis in 2D simulations.
'''
pass
[docs]
def get_top_pressure(eos: Wittmann, temp, ne=None, rho=None):
'''
Return a pressure for the top of atmosphere.
For internal use.
In order this is deduced from:
- the electron density `ne`, if provided
- the mass density `rho`, if provided
- the electron pressure present in FALC
Returns
-------
pressure : float
pressure IN CGS [dyn cm-2]
'''
if ne is not None:
pe = ne * Const.CM_TO_M**3 * cgs.BK * temp
return eos.pg_from_pe(temp, pe)
elif rho is not None:
return eos.pg_from_rho(temp, rho)
pgasCgs = np.array([0.70575286, 0.59018545, 0.51286639, 0.43719268, 0.37731009,
0.33516886, 0.31342915, 0.30604891, 0.30059491, 0.29207645,
0.2859011 , 0.28119224, 0.27893046, 0.27949676, 0.28299726,
0.28644693, 0.28825946, 0.29061192, 0.29340255, 0.29563072,
0.29864548, 0.30776456, 0.31825915, 0.32137574, 0.3239401 ,
0.32622212, 0.32792196, 0.3292243 , 0.33025437, 0.33146736,
0.3319676 , 0.33217821, 0.3322355 , 0.33217166, 0.33210297,
0.33203833, 0.33198508])
tempCoord = np.array([ 7600., 7780., 7970., 8273., 8635., 8988., 9228.,
9358., 9458., 9587., 9735., 9983., 10340., 10850.,
11440., 12190., 13080., 14520., 16280., 17930., 20420.,
24060., 27970., 32150., 36590., 41180., 45420., 49390.,
53280., 60170., 66150., 71340., 75930., 83890., 90820.,
95600., 100000.])
ptop = np.interp(temp, tempCoord, pgasCgs)
return ptop
[docs]
@dataclass
class Stratifications:
'''
Stores the optional derived z-stratifications of an atmospheric model.
Attributes
----------
cmass : np.ndarray
Column mass [kg m-2].
tauRef : np.ndarray
Reference optical depth at 500 nm.
'''
cmass: np.ndarray
tauRef: np.ndarray
[docs]
def dimensioned_view(self, shape) -> 'Stratifications':
'''
Makes an instance of `Stratifications` reshaped to the provided
shape for multi-dimensional atmospheres.
For internal use.
Parameters
----------
shape : tuple
Shape to reform the stratifications, provided by
`Layout.dimensioned_shape`.
Returns
-------
stratifications : Stratifications
Reshaped stratifications.
'''
strat = copy(self)
strat.cmass = self.cmass.reshape(shape)
strat.tauRef = self.tauRef.reshape(shape)
return strat
[docs]
def unit_view(self) -> 'Stratifications':
'''
Makes an instance of `Stratifications` with the correct `astropy.units`
For internal use.
Returns
-------
stratifications : Stratifications
The same data with units applied.
'''
strat = copy(self)
strat.cmass = self.cmass << u.kg / u.m**2
strat.tauRef = self.tauRef << u.dimensionless_unscaled
return strat
[docs]
def dimensioned_unit_view(self, shape) -> 'Stratifications':
'''
Makes an instance of `Stratifications` reshaped to the provided shape
with the correct `astropy.units` for multi-dimensional atmospheres.
For internal use.
Parameters
----------
shape : tuple
Shape to reform the stratifications, provided by
`Layout.dimensioned_shape`.
Returns
-------
stratifications : Stratifications
Reshaped stratifications with units.
'''
strat = self.dimensioned_view(shape)
return strat.unit_view()
[docs]
@dataclass
class Layout:
'''
Storage for basic atmospheric parameters whose presence is determined by
problem dimensionality, boundary conditions and optional stratifications.
Attributes
----------
Ndim : int
Number of dimensions in model.
x : np.ndarray
Ordinates of grid points along the x-axis (present for Ndim >= 2) [m].
y : np.ndarray
Ordinates of grid points along the y-axis (present for Ndim == 3) [m].
z : np.ndarray
Ordinates of grid points along the z-axis (present for all Ndim) [m].
vx : np.ndarray
x component of plasma velocity (present for Ndim >= 2) [m/s].
vy : np.ndarray
y component of plasma velocity (present for Ndim == 3) [m/s].
vz : np.ndarray
z component of plasma velocity (present for all Ndim) [m/s]. Aliased to
`vlos` when `Ndim==1`
xLowerBc : BoundaryCondition
Boundary condition for the plane of minimal x-coordinate.
xUpperBc : BoundaryCondition
Boundary condition for the plane of maximal x-coordinate.
yLowerBc : BoundaryCondition
Boundary condition for the plane of minimal y-coordinate.
yUpperBc : BoundaryCondition
Boundary condition for the plane of maximal y-coordinate.
zLowerBc : BoundaryCondition
Boundary condition for the plane of minimal z-coordinate.
zUpperBc : BoundaryCondition
Boundary condition for the plane of maximal z-coordinate.
'''
Ndim: int
x: np.ndarray
y: np.ndarray
z: np.ndarray
vx: np.ndarray
vy: np.ndarray
vz: np.ndarray
xLowerBc: BoundaryCondition
xUpperBc: BoundaryCondition
yLowerBc: BoundaryCondition
yUpperBc: BoundaryCondition
zLowerBc: BoundaryCondition
zUpperBc: BoundaryCondition
stratifications: Optional[Stratifications] = None
[docs]
@classmethod
def make_1d(cls, z: np.ndarray, vz: np.ndarray,
lowerBc: BoundaryCondition, upperBc: BoundaryCondition,
stratifications: Optional[Stratifications]=None) -> 'Layout':
'''
Construct 1D Layout.
'''
return cls(Ndim=1, x=np.array(()), y=np.array(()),
z=z, vx=np.array(()), vy=np.array(()),
vz=vz, xLowerBc=NoBc(), xUpperBc=NoBc(),
yLowerBc=NoBc(), yUpperBc=NoBc(),
zLowerBc=lowerBc, zUpperBc=upperBc,
stratifications=stratifications)
[docs]
@classmethod
def make_2d(cls, x: np.ndarray, z: np.ndarray,
vx: np.ndarray, vz: np.ndarray,
xLowerBc: BoundaryCondition, xUpperBc: BoundaryCondition,
zLowerBc: BoundaryCondition, zUpperBc: BoundaryCondition,
stratifications: Optional[Stratifications]=None) -> 'Layout':
'''
Construct 2D Layout.
'''
Bc = BoundaryCondition
return cls(Ndim=2, x=x, y=np.array(()), z=z,
vx=vx, vy=np.array(()), vz=vz,
xLowerBc=xLowerBc, xUpperBc=xUpperBc,
yLowerBc=NoBc(), yUpperBc=NoBc(),
zLowerBc=zLowerBc, zUpperBc=zUpperBc,
stratifications=stratifications)
[docs]
@classmethod
def make_3d(cls, x: np.ndarray, y: np.ndarray, z: np.ndarray,
vx: np.ndarray, vy: np.ndarray, vz: np.ndarray,
xLowerBc: BoundaryCondition, xUpperBc: BoundaryCondition,
yLowerBc: BoundaryCondition, yUpperBc: BoundaryCondition,
zLowerBc: BoundaryCondition, zUpperBc: BoundaryCondition,
stratifications: Optional[Stratifications]=None) -> 'Layout':
'''
Construct 3D Layout.
'''
return cls(Ndim=3, x=x, y=y, z=z,
vx=vx, vy=vy, vz=vz,
xLowerBc=xLowerBc, xUpperBc=xUpperBc,
yLowerBc=yLowerBc, yUpperBc=yUpperBc,
zLowerBc=zLowerBc, zUpperBc=zUpperBc,
stratifications=stratifications)
@property
def Nx(self) -> int:
'''
Number of grid points along the x-axis.
'''
return self.x.shape[0]
@property
def Ny(self) -> int:
'''
Number of grid points along the y-axis.
'''
return self.y.shape[0]
@property
def Nz(self) -> int:
'''
Number of grid points along the z-axis.
'''
return self.z.shape[0]
@property
def Noutgoing(self) -> int:
'''
Number of grid points at which the outgoing radiation is computed.
'''
return max(1, self.Nx, self.Nx * self.Ny)
@property
def vlos(self) -> np.ndarray:
if self.Ndim > 1:
raise ValueError('vlos is ambiguous when Ndim > 1, use vx, vy, or vz instead.')
return self.vz
@property
def Nspace(self) -> int:
'''
Number of spatial points present in the grid.
'''
if self.Ndim == 1:
return self.Nz
elif self.Ndim == 2:
return self.Nx * self.Nz
elif self.Ndim == 3:
return self.Nx * self.Ny * self.Nz
else:
raise ValueError('Invalid Ndim: %d, check geometry initialisation' % self.Ndim)
@property
def tauRef(self):
'''
Alias to `self.stratifications.tauRef`, if computed.
'''
if self.stratifications is not None:
return self.stratifications.tauRef
else:
raise ValueError('tauRef not computed for this Atmosphere')
@property
def cmass(self):
'''
Alias to `self.stratifications.cmass`, if computed.
'''
if self.stratifications is not None:
return self.stratifications.cmass
else:
raise ValueError('tauRef not computed for this Atmosphere')
@property
def dimensioned_shape(self):
'''
Tuple defining the shape to which the arrays of atmospheric paramters
can be reshaped to be indexed in a 1/2/3D fashion.
'''
if self.Ndim == 1:
shape = (self.Nz,)
elif self.Ndim == 2:
shape = (self.Nz, self.Nx)
elif self.Ndim == 3:
shape = (self.Nz, self.Ny, self.Nx)
else:
raise ValueError('Unreasonable Ndim (%d)' % self.Ndim)
return shape
[docs]
def dimensioned_view(self) -> 'Layout':
'''
Returns a view over the contents of Layout reshaped so all data has
the correct (1/2/3D) dimensionality for the atmospheric model, as
these are all stored under a flat scheme.
'''
layout = copy(self)
shape = self.dimensioned_shape
if self.stratifications is not None:
layout.stratifications = self.stratifications.dimensioned_view(shape)
if self.vx.size > 0:
layout.vx = self.vx.reshape(shape)
if self.vy.size > 0:
layout.vy = self.vy.reshape(shape)
if self.vz.size > 0:
layout.vz = self.vz.reshape(shape)
return layout
[docs]
def unit_view(self) -> 'Layout':
'''
Returns a view over the contents of the Layout with the correct
`astropy.units`.
'''
layout = copy(self)
layout.x = self.x << u.m
layout.y = self.y << u.m
layout.z = self.z << u.m
layout.vx = self.vx << u.m / u.s
layout.vy = self.vy << u.m / u.s
layout.vz = self.vz << u.m / u.s
if self.stratifications is not None:
layout.stratifications = self.stratifications.unit_view()
return layout
[docs]
def dimensioned_unit_view(self) -> 'Layout':
'''
Returns a view over the contents of Layout reshaped so all data has
the correct (1/2/3D) dimensionality for the atmospheric model, and
the correct `astropy.units`.
'''
layout = self.dimensioned_view()
return layout.unit_view()
[docs]
@dataclass
class Atmosphere:
'''
Storage for all atmospheric data. These arrays will be shared directly
with the backend, so a modification here also modifies the data seen by
the backend. Be careful to modify these arrays *in place*, as their data
is shared by direct memory reference. Use the class methods to construct
atmospheres of different dimensionality.
Attributes
----------
structure : Layout
A layout structure holding the atmospheric stratification, and
velocity description.
temperature : np.ndarray
The atmospheric temperature structure.
vturb : np.ndarray
The atmospheric microturbulent velocity structure.
ne : np.ndarray
The electron density structure in the atmosphere.
nHTot : np.ndarray
The total hydrogen number density distribution throughout the
atmosphere.
B : np.ndarray, optional
The magnitude of the stratified magnetic field throughout the
atmosphere (Tesla).
gammaB : np.ndarray, optional
Co-altitude (latitude) of magnetic field vector (radians) throughout the
atmosphere from the local vertical.
chiB : np.ndarray, optional
Azimuth of magnetic field vector (radians) in the x-y plane, measured
from the x-axis.
'''
structure: Layout
temperature: np.ndarray
vturb: np.ndarray
ne: np.ndarray
nHTot: np.ndarray
B: Optional[np.ndarray] = None
gammaB: Optional[np.ndarray] = None
chiB: Optional[np.ndarray] = None
@property
def Ndim(self) -> int:
'''
Ndim : int
The dimensionality (1, 2, or 3) of the atmospheric model.
'''
return self.structure.Ndim
@property
def Nx(self) -> int:
'''
Nx : int
The number of points in the x-direction discretisation.
'''
return self.structure.Nx
@property
def Ny(self) -> int:
'''
Ny : int
The number of points in the y-direction discretisation.
'''
return self.structure.Ny
@property
def Nz(self) -> int:
'''
Nz : int
The number of points in the y-direction discretisation.
'''
return self.structure.Nz
@property
def Noutgoing(self) -> int:
'''
Noutgoing : int
The number of cells at the top of the atmosphere (that each produce a
spectrum).
'''
return self.structure.Noutgoing
@property
def vx(self) -> np.ndarray:
'''
vx : np.ndarray
x component of plasma velocity (present for Ndim >= 2) [m/s].
'''
return self.structure.vx
@property
def vy(self) -> np.ndarray:
'''
vy : np.ndarray
y component of plasma velocity (present for Ndim == 3) [m/s].
'''
return self.structure.vy
@property
def vz(self) -> np.ndarray:
'''
vz : np.ndarray
z component of plasma velocity (present for all Ndim) [m/s]. Aliased
to `vlos` when `Ndim==1`
'''
return self.structure.vz
@property
def vlos(self) -> np.ndarray:
'''
vz : np.ndarray
z component of plasma velocity (present for all Ndim) [m/s]. Only
available when Ndim==1`.
'''
return self.structure.vlos
@property
def cmass(self) -> np.ndarray:
'''
cmass : np.ndarray
Column mass [kg m-2].
'''
return self.structure.cmass
@property
def tauRef(self) -> np.ndarray:
'''
tauRef : np.ndarray
Reference optical depth at 500 nm.
'''
return self.structure.tauRef
@property
def height(self) -> np.ndarray:
return self.structure.z
@property
def x(self) -> np.ndarray:
'''
x : np.ndarray
Ordinates of grid points along the x-axis (present for Ndim >= 2) [m].
'''
return self.structure.x
@property
def y(self) -> np.ndarray:
'''
y : np.ndarray
Ordinates of grid points along the y-axis (present for Ndim == 3) [m].
'''
return self.structure.y
@property
def z(self) -> np.ndarray:
'''
z : np.ndarray
Ordinates of grid points along the z-axis (present for all Ndim) [m].
'''
return self.structure.z
@property
def zLowerBc(self) -> BoundaryCondition:
'''
zLowerBc : BoundaryCondition
Boundary condition for the plane of minimal z-coordinate.
'''
return self.structure.zLowerBc
@property
def zUpperBc(self) -> BoundaryCondition:
'''
zUpperBc : BoundaryCondition
Boundary condition for the plane of maximal z-coordinate.
'''
return self.structure.zUpperBc
@property
def yLowerBc(self) -> BoundaryCondition:
'''
yLowerBc : BoundaryCondition
Boundary condition for the plane of minimal y-coordinate.
'''
return self.structure.yLowerBc
@property
def yUpperBc(self) -> BoundaryCondition:
'''
yUpperBc : BoundaryCondition
Boundary condition for the plane of maximal y-coordinate.
'''
return self.structure.yUpperBc
@property
def xLowerBc(self) -> BoundaryCondition:
'''
xLowerBc : BoundaryCondition
Boundary condition for the plane of minimal x-coordinate.
'''
return self.structure.xLowerBc
@property
def xUpperBc(self) -> BoundaryCondition:
'''
xUpperBc : BoundaryCondition
Boundary condition for the plane of maximal x-coordinate.
'''
return self.structure.xUpperBc
@property
def Nspace(self):
'''
Nspace : int
Total number of points in the atmospheric spatial discretistaion.
'''
return self.structure.Nspace
@property
def Nrays(self):
'''
Nrays : int
Number of rays in angular discretisation used.
'''
try:
if self.muz is None:
raise AttributeError('Nrays not set, call atmos.rays or .quadrature first')
except AttributeError:
raise AttributeError('Nrays not set, call atmos.rays or .quadrature first')
return self.muz.shape[0]
[docs]
def dimensioned_view(self):
'''
Returns a view over the contents of Layout reshaped so all data has
the correct (1/2/3D) dimensionality for the atmospheric model, as
these are all stored under a flat scheme.
'''
shape = self.structure.dimensioned_shape
atmos = copy(self)
atmos.structure = self.structure.dimensioned_view()
atmos.temperature = self.temperature.reshape(shape)
atmos.vturb = self.vturb.reshape(shape)
atmos.ne = self.ne.reshape(shape)
atmos.nHTot = self.nHTot.reshape(shape)
if self.B is not None:
atmos.B = self.B.reshape(shape)
atmos.chiB = self.chiB.reshape(shape)
atmos.gammaB = self.gammaB.reshape(shape)
return atmos
[docs]
def unit_view(self):
'''
Returns a view over the contents of the Layout with the correct
`astropy.units`.
'''
atmos = copy(self)
atmos.structure = self.structure.unit_view()
atmos.temperature = self.temperature << u.K
atmos.vturb = self.vturb << u.m / u.s
atmos.ne = self.ne << u.m**(-3)
atmos.nHTot = self.nHTot << u.m**(-3)
if self.B is not None:
atmos.B = self.B << u.T
atmos.chiB = self.chiB << u.rad
atmos.gammaB = self.gammaB << u.rad
return atmos
[docs]
def dimensioned_unit_view(self):
'''
Returns a view over the contents of Layout reshaped so all data has
the correct (1/2/3D) dimensionality for the atmospheric model, and
the correct `astropy.units`.
'''
atmos = self.dimensioned_view()
return atmos.unit_view()
[docs]
@classmethod
def make_1d(cls, scale: ScaleType, depthScale: np.ndarray,
temperature: np.ndarray, vlos: np.ndarray,
vturb: np.ndarray, ne: Optional[np.ndarray]=None,
hydrogenPops: Optional[np.ndarray]=None,
nHTot: Optional[np.ndarray]=None,
B: Optional[np.ndarray]=None,
gammaB: Optional[np.ndarray]=None,
chiB: Optional[np.ndarray]=None,
lowerBc: Optional[BoundaryCondition]=None,
upperBc: Optional[BoundaryCondition]=None,
convertScales: bool=True,
abundance: Optional[AtomicAbundance]=None,
logG: float=2.44,
Pgas: Optional[np.ndarray]=None,
Pe: Optional[np.ndarray]=None,
Ptop: Optional[float]=None,
PeTop: Optional[float]=None,
verbose: bool=False):
'''
Constructor for 1D Atmosphere objects. Optionally will use an
equation of state (EOS) to estimate missing parameters.
If sufficient information is provided (i.e. all required parameters
and ne and (hydrogenPops or nHTot)) then the EOS is not invoked to
estimate any thermodynamic properties. If both of nHTot and
hydrogenPops are omitted, then the electron pressure will be used
with the Wittmann equation of state to estimate the mass density, and
the hydrogen number density will be inferred from this and the
abundances. If, instead, ne is omitted, then the mass density will be
used with the Wittmann EOS to estimate the electron pressure.
If both of these are omitted then the EOS will be used to estimate
both. If:
- Pgas is provided, then this gas pressure will define the
atmospheric stratification and will be used with the EOS.
- Pe is provided, then this electron pressure will define the
atmospheric stratification and will be used with the EOS.
- Ptop is provided, then this gas pressure at the top of the
atmosphere will be used with the log gravitational acceleration
logG, and the EOS to estimate the missing parameters assuming
hydrostatic equilibrium.
- PeTop is provided, then this electron pressure at the top of
the atmosphere will be used with the log gravitational
acceleration logG, and the EOS to estimate the missing parameters
assuming hydrostatic equilibrium.
- If all of Pgas, Pe, Ptop, PeTop are omitted then Ptop will be
estimated from the gas pressure in the FALC model at the
temperature at the top boundary. The hydrostatic reconstruction
will then continue as usual.
convertScales will substantially slow down this function due to the
slow calculation of background opacities used to compute tauRef. If
an atmosphere is constructed with a Geometric stratification, and an
estimate of tauRef is not required before running the main RT module,
then this can be set to False.
All of these parameters can be provided as astropy Quantities, and
will be converted in the constructor.
Parameters
----------
scale : ScaleType
The type of stratification used along the z-axis.
depthScale : np.ndarray
The z-coordinates used along the chosen stratification. The
stratification is expected to start at the top of the atmosphere
(closest to the observer), and descend along the observer's line
of sight.
temperature : np.ndarray
Temperature structure of the atmosphere [K].
vlos : np.ndarray
Velocity structure of the atmosphere along z [m/s].
vturb : np.ndarray
Microturbulent velocity structure of the atmosphere [m/s].
ne : np.ndarray
Electron density structure of the atmosphere [m-3].
hydrogenPops : np.ndarray, optional
Detailed (per level) hydrogen number density structure of the
atmosphere [m-3], 2D array [Nlevel, Nspace].
nHTot : np.ndarray, optional
Total hydrogen number density structure of the atmosphere [m-3]
B : np.ndarray, optional.
Magnetic field strength [T].
gammaB : np.ndarray, optional
Co-altitude of magnetic field vector [radians].
chiB : np.ndarray, optional
Azimuth of magnetic field vector (in x-y plane, from x) [radians].
lowerBc : BoundaryCondition, optional
Boundary condition for incoming radiation at the minimal z
coordinate (default: ThermalisedRadiation).
upperBc : BoundaryCondition, optional
Boundary condition for incoming radiation at the maximal z
coordinate (default: ZeroRadiation).
convertScales : bool, optional
Whether to automatically compute tauRef and cmass for an
atmosphere given in a stratification of m (default: True).
abundance: AtomicAbundance, optional
An instance of AtomicAbundance giving the abundances of each
atomic species in the given atmosphere, only used if the EOS is
invoked. (default: DefaultAtomicAbundance)
logG: float, optional
The log10 of the magnitude of gravitational acceleration [m/s2]
(default: 2.44).
Pgas: np.ndarray, optional
The gas pressure stratification of the atmosphere [Pa],
optionally used by the EOS.
Pe: np.ndarray, optional
The electron pressure stratification of the atmosphere [Pa],
optionally used by the EOS.
Ptop: np.ndarray, optional
The gas pressure at the top of the atmosphere [Pa], optionally
used by the EOS for a hydrostatic reconstruction.
Petop: np.ndarray, optional
The electron pressure at the top of the atmosphere [Pa],
optionally used by the EOS for a hydrostatic reconstruction.
verbose: bool, optional
Explain decisions made with the EOS to estimate missing
parameters (if invoked) through print calls (default: False).
Raises
------
ValueError
if incorrect arguments or unable to construct estimate missing
parameters.
'''
if scale == ScaleType.Geometric:
depthScale = (depthScale << u.m).value
if np.any((depthScale[:-1] - depthScale[1:]) < 0.0):
raise ValueError("Geometric depth scale should be provided in decreasing height.")
elif scale == ScaleType.ColumnMass:
depthScale = (depthScale << u.kg / u.m**2).value
if np.any((depthScale[1:] - depthScale[:-1]) < 0.0):
raise ValueError("Column mass depth scale should be provided in increasing column mass.")
check_shape = lambda x, xName: check_shape_exception(x,
depthScale.shape[0], 1, xName)
temperature = (temperature << u.K).value
check_shape(temperature, 'temperature')
vlos = (vlos << u.m / u.s).value
check_shape(vlos, 'vlos')
vturb = (vturb << u.m / u.s).value
check_shape(vturb, 'vturb')
if ne is not None:
ne = (ne << u.m**(-3)).value
check_shape(ne, 'ne')
if hydrogenPops is not None:
hydrogenPops = (hydrogenPops << u.m**(-3)).value
hydrogenPops = cast(np.ndarray, hydrogenPops)
if hydrogenPops.shape[1] != depthScale.shape[0]:
raise ValueError(f'Array hydrogenPops does not have the expected'
f' second dimension: {depthScale.shape[0]}'
f' (got: {hydrogenPops.shape[1]}).')
if nHTot is not None:
nHTot = (nHTot << u.m**(-3)).value
check_shape(nHTot, 'nHTot')
if B is not None:
B = (B << u.T).value
check_shape(B, 'B')
if gammaB is None or chiB is None:
raise ValueError('B is set, both gammaB and chiB must be also.')
if gammaB is not None:
gammaB = (gammaB << u.rad).value
check_shape(gammaB, 'gammaB')
if B is None or chiB is None:
raise ValueError('gammaB is set, both B and chiB must be also.')
if chiB is not None:
chiB = (chiB << u.rad).value
check_shape(chiB, 'chiB')
if gammaB is None or B is None:
raise ValueError('chiB is set, both B and gammaB must be also.')
if lowerBc is None:
lowerBc = ThermalisedRadiation()
elif isinstance(lowerBc, PeriodicRadiation):
raise ValueError('Cannot set periodic boundary conditions for 1D atmosphere')
if upperBc is None:
upperBc = ZeroRadiation()
elif isinstance(upperBc, PeriodicRadiation):
raise ValueError('Cannot set periodic boundary conditions for 1D atmosphere')
if scale != ScaleType.Geometric and not convertScales:
raise ValueError('Height scale must be provided if scale conversion is not applied')
if nHTot is None and hydrogenPops is not None:
nHTot = np.sum(hydrogenPops, axis=0)
if np.any(temperature < 2000):
# NOTE(cmo): Minimum value was decreased in NICOLE so should be safe
raise ValueError('Minimum temperature too low for EOS (< 2000 K)')
if abundance is None:
abundance = DefaultAtomicAbundance
wittAbundances = np.array([abundance[e] for e in PeriodicTable.elements])
eos = Wittmann(abund_init=wittAbundances)
Nspace = depthScale.shape[0]
if nHTot is None and ne is not None:
if verbose:
print('Setting nHTot from electron pressure.')
pe = ne * Const.CM_TO_M**3 * cgs.BK * temperature
rho = np.zeros(Nspace)
for k in range(Nspace):
rho[k] = eos.rho_from_pe(temperature[k], pe[k])
nHTot = np.copy(rho / (Const.CM_TO_M**3 / Const.G_TO_KG)
/ (Const.Amu * abundance.massPerH))
elif ne is None and nHTot is not None:
if verbose:
print('Setting ne from mass density.')
rho = Const.Amu * abundance.massPerH * nHTot * Const.CM_TO_M**3 / Const.G_TO_KG
pe = np.zeros(Nspace)
for k in range(Nspace):
pe[k] = eos.pe_from_rho(temperature[k], rho[k])
ne = np.copy(pe / (cgs.BK * temperature) / Const.CM_TO_M**3)
elif ne is None and nHTot is None:
if Pgas is not None and Pgas.shape[0] != Nspace:
raise ValueError('Dimensions of Pgas do not match atmospheric depth')
if Pe is not None and Pe.shape[0] != Nspace:
raise ValueError('Dimensions of Pe do not match atmospheric depth')
if Pgas is not None and Pe is None:
if verbose:
print('Setting ne, nHTot from provided gas pressure.')
# Convert to cgs for eos
pgas = Pgas * (Const.CM_TO_M**2 / Const.G_TO_KG)
pe = np.zeros(Nspace)
rho = np.zeros(Nspace)
for k in range(Nspace):
pe[k] = eos.pe_from_pg(temperature[k], pgas[k])
rho[k] = eos.rho_from_pg(temperature[k], pgas[k])
elif Pe is not None and Pgas is None:
if verbose:
print('Setting ne, nHTot from provided electron pressure.')
# Convert to cgs for eos
pe = Pe * (Const.CM_TO_M**2 / Const.G_TO_KG)
pgas = np.zeros(Nspace)
rho = np.zeros(Nspace)
for k in range(Nspace):
pgas[k] = eos.pg_from_pe(temperature[k], pe[k])
rho[k] = eos.rho_from_pe(temperature[k], pe[k])
elif Pgas is None and Pe is None:
# Doing Hydrostatic Eq. based here on NICOLE implementation
gravAcc = 10**logG / Const.CM_TO_M
Avog = 6.022045e23 # Avogadro's Number
if Ptop is None and PeTop is not None:
if verbose:
print(('Setting ne, nHTot to hydrostatic equilibrium (logG=%f)'
' from provided top electron pressure.') % logG)
PeTop *= (Const.CM_TO_M**2 / Const.G_TO_KG)
Ptop = eos.pg_from_pe(temperature[0], PeTop)
elif Ptop is not None and PeTop is None:
if verbose:
print(('Setting ne, nHTot to hydrostatic equilibrium (logG=%f)'
' from provided top gas pressure.') % logG)
Ptop *= (Const.CM_TO_M**2 / Const.G_TO_KG)
PeTop = eos.pe_from_pg(temperature[0], Ptop)
elif Ptop is None and PeTop is None:
if verbose:
print(('Setting ne, nHTot to hydrostatic equilibrium (logG=%f)'
' from FALC gas pressure at upper boundary temperature.') % logG)
Ptop = get_top_pressure(eos, temperature[0])
PeTop = eos.pe_from_pg(temperature[0], Ptop)
else:
raise ValueError("Cannot set both Ptop and PeTop")
if scale == ScaleType.Tau500:
tau = depthScale
elif scale == ScaleType.Geometric:
height = depthScale / Const.CM_TO_M
else:
cmass = depthScale / Const.G_TO_KG * Const.CM_TO_M**2
# NOTE(cmo): Compute HSE following the NICOLE method.
rho = np.zeros(Nspace)
chi_c = np.zeros(Nspace)
pgas = np.zeros(Nspace)
pe = np.zeros(Nspace)
pgas[0] = Ptop
pe[0] = PeTop
chi_c[0] = eos.cont_opacity(temperature[0], pgas[0], pe[0],
np.array([5000.0])).item()
avg_mol_weight = lambda k: abundance.massPerH / (abundance.totalAbundance
+ pe[k] / pgas[k])
rho[0] = Ptop * avg_mol_weight(0) / Avog / cgs.BK / temperature[0]
chi_c[0] /= rho[0]
for k in range(1, Nspace):
chi_c[k] = chi_c[k-1]
rho[k] = rho[k-1]
for it in range(200):
if scale == ScaleType.Tau500:
dtau = tau[k] - tau[k-1]
pgas[k] = (pgas[k-1] + gravAcc * dtau
/ (0.5 * (chi_c[k-1] + chi_c[k])))
elif scale == ScaleType.Geometric:
pgas[k] = pgas[k-1] * np.exp(-gravAcc / Avog /
cgs.BK * avg_mol_weight(k-1)
* 0.5 * (1.0 / temperature[k-1]
+ 1.0 / temperature[k]) *
(height[k] - height[k-1]))
else:
pgas[k] = gravAcc * cmass[k]
pe[k] = eos.pe_from_pg(temperature[k], pgas[k])
prevChi = chi_c[k]
chi_c[k] = eos.cont_opacity(temperature[k], pgas[k], pe[k],
np.array([5000.0])).item()
rho[k] = (pgas[k] * avg_mol_weight(k) / Avog /
cgs.BK / temperature[k])
chi_c[k] /= rho[k]
change = np.abs(prevChi - chi_c[k]) / (prevChi + chi_c[k])
if change < 1e-5:
break
else:
raise ConvergenceError(('No convergence in HSE at depth point %d, '
'last change %2.4e') % (k, change))
nHTot = np.copy(rho / (Const.CM_TO_M**3 / Const.G_TO_KG)
/ (Const.Amu * abundance.massPerH))
ne = np.copy(pe / (cgs.BK * temperature) / Const.CM_TO_M**3)
# NOTE(cmo): Compute final pgas, pe from EOS that will be used for
# background opacity.
rhoSI = Const.Amu * abundance.massPerH * nHTot
rho = Const.Amu * abundance.massPerH * nHTot * Const.CM_TO_M**3 / Const.G_TO_KG
pgas = np.zeros_like(depthScale)
pe = np.zeros_like(depthScale)
for k in range(Nspace):
pgas[k] = eos.pg_from_rho(temperature[k], rho[k])
pe[k] = eos.pe_from_rho(temperature[k], rho[k])
chi_c = np.zeros_like(depthScale)
for k in range(depthScale.shape[0]):
chi_c[k] = eos.cont_opacity(temperature[k], pgas[k], pe[k],
np.array([5000.0])).item() / Const.CM_TO_M
# NOTE(cmo): We should now have a uniform minimum set of data (other
# than the scale type), allowing us to simply convert between the
# scales we do have!
if convertScales:
if scale == ScaleType.ColumnMass:
height = np.zeros_like(depthScale)
tau_ref = np.zeros_like(depthScale)
cmass = depthScale
height[0] = 0.0
tau_ref[0] = chi_c[0] / rhoSI[0] * cmass[0]
for k in range(1, cmass.shape[0]):
height[k] = height[k-1] - 2.0 * ((cmass[k] - cmass[k-1])
/ (rhoSI[k-1] + rhoSI[k]))
tau_ref[k] = tau_ref[k-1] + 0.5 * ((chi_c[k-1] + chi_c[k])
* (height[k-1] - height[k]))
hTau1 = np.interp(1.0, tau_ref, height)
height -= hTau1
elif scale == ScaleType.Geometric:
cmass = np.zeros(Nspace)
tau_ref = np.zeros(Nspace)
height = depthScale
nHTot = cast(np.ndarray, nHTot)
ne = cast(np.ndarray, ne)
cmass[0] = ((nHTot[0] * abundance.massPerH + ne[0])
* (Const.KBoltzmann * temperature[0] / 10**logG))
tau_ref[0] = 0.5 * chi_c[0] * (height[0] - height[1])
if tau_ref[0] > 1.0:
tau_ref[0] = 0.0
for k in range(1, Nspace):
cmass[k] = cmass[k-1] + 0.5 * ((rhoSI[k-1] + rhoSI[k])
* (height[k-1] - height[k]))
tau_ref[k] = tau_ref[k-1] + 0.5 * ((chi_c[k-1] + chi_c[k])
* (height[k-1] - height[k]))
elif scale == ScaleType.Tau500:
cmass = np.zeros(Nspace)
height = np.zeros(Nspace)
tau_ref = depthScale
cmass[0] = (tau_ref[0] / chi_c[0]) * rhoSI[0]
for k in range(1, Nspace):
height[k] = height[k-1] - 2.0 * ((tau_ref[k] - tau_ref[k-1])
/ (chi_c[k-1] + chi_c[k]))
cmass[k] = cmass[k-1] + 0.5 * ((chi_c[k-1] + chi_c[k])
* (height[k-1] - height[k]))
hTau1 = np.interp(1.0, tau_ref, height)
height -= hTau1
else:
raise ValueError("Other scales not handled yet")
stratifications: Optional[Stratifications] = Stratifications(
cmass=cmass,
tauRef=tau_ref)
else:
stratifications = None
height = depthScale
layout = Layout.make_1d(z=height, vz=vlos,
lowerBc=lowerBc, upperBc=upperBc,
stratifications=stratifications)
ne = cast(np.ndarray, ne)
nHTot = cast(np.ndarray, nHTot)
atmos = cls(structure=layout, temperature=temperature, vturb=vturb,
ne=ne, nHTot=nHTot, B=B, gammaB=gammaB, chiB=chiB)
return atmos
[docs]
@classmethod
def make_2d(cls, height: np.ndarray, x: np.ndarray,
temperature: np.ndarray, vx: np.ndarray,
vz: np.ndarray, vturb: np.ndarray,
ne: Optional[np.ndarray]=None,
nHTot: Optional[np.ndarray]=None,
B: Optional[np.ndarray]=None,
gammaB: Optional[np.ndarray]=None,
chiB: Optional[np.ndarray]=None,
xUpperBc: Optional[BoundaryCondition]=None,
xLowerBc: Optional[BoundaryCondition]=None,
zUpperBc: Optional[BoundaryCondition]=None,
zLowerBc: Optional[BoundaryCondition]=None,
abundance: Optional[AtomicAbundance]=None,
verbose=False):
'''
Constructor for 2D Atmosphere objects.
No provision for estimating parameters using hydrostatic equilibrium
is provided, but one of ne, or nHTot can be omitted and inferred by
use of the Wittmann equation of state.
The atmosphere must be defined on a geometric stratification.
All atmospheric parameters are expected in a 2D [z, x] array.
Parameters
----------
height : np.ndarray
The z-coordinates of the atmospheric grid. The stratification is
expected to start at the top of the atmosphere (closest to the
observer), and descend along the observer's line of sight.
x : np.ndarray
The (horizontal) x-coordinates of the atmospheric grid.
temperature : np.ndarray
Temperature structure of the atmosphere [K].
vx : np.ndarray
x-component of the atmospheric velocity [m/s].
vz : np.ndarray
z-component of the atmospheric velocity [m/s].
vturb : np.ndarray
Microturbulent velocity structure [m/s].
ne : np.ndarray
Electron density structure of the atmosphere [m-3].
nHTot : np.ndarray, optional
Total hydrogen number density structure of the atmosphere [m-3].
B : np.ndarray, optional.
Magnetic field strength [T].
gammaB : np.ndarray, optional
Inclination (co-altitude) of magnetic field vector to the z-axis
[radians].
chiB : np.ndarray, optional
Azimuth of magnetic field vector (in x-y plane, from x) [radians].
xLowerBc : BoundaryCondition, optional
Boundary condition for incoming radiation at the minimal x
coordinate (default: PeriodicRadiation).
xUpperBc : BoundaryCondition, optional
Boundary condition for incoming radiation at the maximal x
coordinate (default: PeriodicRadiation).
zLowerBc : BoundaryCondition, optional
Boundary condition for incoming radiation at the minimal z
coordinate (default: ThermalisedRadiation).
zUpperBc : BoundaryCondition, optional
Boundary condition for incoming radiation at the maximal z
coordinate (default: ZeroRadiation).
convertScales : bool, optional
Whether to automatically compute tauRef and cmass for an
atmosphere given in a stratification of m (default: True).
abundance: AtomicAbundance, optional
An instance of AtomicAbundance giving the abundances of each
atomic species in the given atmosphere, only used if the EOS is
invoked. (default: DefaultAtomicAbundance)
verbose: bool, optional
Explain decisions made with the EOS to estimate missing
parameters (if invoked) through print calls (default: False).
Raises
------
ValueError
if incorrect arguments or unable to construct estimate missing
parameters.
'''
x = (x << u.m).value
if np.any((x[1:] - x[:-1]) < 0.0):
raise ValueError("x should be increasing with index (left -> right).")
height = (height << u.m).value
if np.any((height[:-1] - height[1:]) < 0.0):
raise ValueError("Height should be decreasing with index (top -> bottom).")
temperature = (temperature << u.K).value
vx = (vx << u.m / u.s).value
vz = (vz << u.m / u.s).value
vturb = (vturb << u.m / u.s).value
if ne is not None:
ne = (ne << u.m**(-3)).value
if nHTot is not None:
nHTot = (nHTot << u.m**(-3)).value
if B is not None:
B = (B << u.T).value
B = cast(np.ndarray, B)
flatB = view_flatten(B)
else:
flatB = None
if gammaB is not None:
gammaB = (gammaB << u.rad).value
gammaB = cast(np.ndarray, gammaB)
flatGammaB = view_flatten(gammaB)
else:
flatGammaB = None
if chiB is not None:
chiB = (chiB << u.rad).value
chiB = cast(np.ndarray, chiB)
flatChiB = view_flatten(chiB)
else:
flatChiB = None
if zLowerBc is None:
zLowerBc = ThermalisedRadiation()
elif isinstance(zLowerBc, PeriodicRadiation):
raise ValueError('Cannot set periodic boundary conditions for z-axis.')
if zUpperBc is None:
zUpperBc = ZeroRadiation()
elif isinstance(zUpperBc, PeriodicRadiation):
raise ValueError('Cannot set periodic boundary conditions for z-axis.')
if xUpperBc is None:
xUpperBc = PeriodicRadiation()
if xLowerBc is None:
xLowerBc = PeriodicRadiation()
if abundance is None:
abundance = DefaultAtomicAbundance
wittAbundances = np.array([abundance[e] for e in PeriodicTable.elements])
eos = Wittmann(abund_init=wittAbundances)
flatHeight = view_flatten(height)
flatTemperature = view_flatten(temperature)
Nspace = flatHeight.shape[0]
if nHTot is None and ne is not None:
if verbose:
print('Setting nHTot from electron pressure.')
flatNe = view_flatten(ne)
pe = flatNe * Const.CM_TO_M**3 * cgs.BK * flatTemperature
rho = np.zeros(Nspace)
for k in range(Nspace):
rho[k] = eos.rho_from_pe(flatTemperature[k], pe[k])
nHTot = np.copy(rho / (Const.CM_TO_M**3 / Const.G_TO_KG)
/ (Const.Amu * abundance.massPerH))
elif ne is None and nHTot is not None:
if verbose:
print('Setting ne from mass density.')
flatNHTot = view_flatten(nHTot)
rho = (Const.Amu * abundance.massPerH * flatNHTot
* Const.CM_TO_M**3 / Const.G_TO_KG)
pe = np.zeros(Nspace)
for k in range(Nspace):
pe[k] = eos.pe_from_rho(flatTemperature[k], rho[k])
ne = np.copy(pe / (cgs.BK * flatTemperature) / Const.CM_TO_M**3)
elif ne is None and nHTot is None:
raise ValueError('Cannot omit both ne and nHTot (currently).')
flatX = view_flatten(x)
nHTot = cast(np.ndarray, nHTot)
flatNHTot = view_flatten(nHTot)
ne = cast(np.ndarray, ne)
flatNe = view_flatten(ne)
flatVx = view_flatten(vx)
flatVz = view_flatten(vz)
flatVturb = view_flatten(vturb)
layout = Layout.make_2d(x=flatX, z=flatHeight, vx=flatVx, vz=flatVz,
xLowerBc=xLowerBc, xUpperBc=xUpperBc,
zLowerBc=zLowerBc, zUpperBc=zUpperBc,
stratifications=None)
atmos = cls(structure=layout, temperature=flatTemperature,
vturb=flatVturb, ne=flatNe, nHTot=flatNHTot, B=flatB,
gammaB=flatGammaB, chiB=flatChiB)
return atmos
[docs]
def quadrature(self, Nrays: Optional[int]=None,
mu: Optional[Sequence[float]]=None,
wmu: Optional[Sequence[float]]=None):
'''
Compute the angular quadrature for solving the RTE and Kinetic
Equilibrium in a given atmosphere.
Procedure varies with dimensionality.
By convention muz is always positive, as the direction on this axis
is determined by the toObs term that is used internally to the formal
solver.
1D:
If a number of rays is given (typically 3 or 5), then the
Gauss-Legendre quadrature for this set is used.
If mu and wmu are instead given then these will be validated and
used.
2+D:
If the number of rays selected is in the list of near optimal
quadratures for unpolarised radiation provided by Stepan et al
2020 (A&A, 646 A24), then this is used. Otherwise an exception is
raised.
The available quadratures are:
+--------+-------+
| Points | Order |
+========+=======+
| 1 | 3 |
+--------+-------+
| 3 | 7 |
+--------+-------+
| 6 | 9 |
+--------+-------+
| 7 | 11 |
+--------+-------+
| 10 | 13 |
+--------+-------+
| 11 | 15 |
+--------+-------+
Parameters
----------
Nrays : int, optional
The number of rays to use in the quadrature. See notes above.
mu : sequence of float, optional
The cosine of the angle made between the between each of the set
of rays and the z axis, only used in 1D.
wmu : sequence of float, optional
The integration weights for each mu, must be provided if mu is provided.
Raises
------
ValueError
on incorrect input.
'''
if self.Ndim == 1:
if Nrays is not None and mu is None:
if Nrays >= 1:
x, w = leggauss(Nrays)
mid, halfWidth = 0.5, 0.5
x = mid + halfWidth * x
w *= halfWidth
self.muz = x
self.wmu = w
else:
raise ValueError('Unsupported Nrays=%d' % Nrays)
elif Nrays is not None and mu is not None:
if wmu is None:
raise ValueError('Must provide wmu when providing mu')
if Nrays != len(mu):
raise ValueError('mu must be Nrays long if Nrays is provided')
if len(mu) != len(wmu):
raise ValueError('mu and wmu must be the same shape')
self.muz = np.array(mu, dtype=np.float64)
self.wmu = np.array(wmu, dtype=np.float64)
self.muy = np.zeros_like(self.muz)
self.mux = np.sqrt(1.0 - self.muz**2)
else:
with open(get_data_path() + 'Quadratures.pickle', 'rb') as pkl:
quads = pickle.load(pkl)
rays = {int(q.split('n')[1]): q for q in quads}
if Nrays not in rays:
raise ValueError('For multidimensional cases Nrays must be in %s' % repr(rays))
quad = quads[rays[Nrays]]
if self.Ndim == 2:
Nrays *= 2
theta = np.deg2rad(quad[:, 1])
chi = np.deg2rad(quad[:, 2])
# polar coords:
# x = sin theta cos chi
# y = sin theta sin chi
# z = cos theta
self.mux = np.zeros(Nrays)
self.mux[:Nrays // 2] = np.sin(theta) * np.cos(chi)
self.mux[Nrays // 2:] = -np.sin(theta) * np.cos(chi)
self.muz = np.zeros(Nrays)
self.muz[:Nrays // 2] = np.cos(theta)
self.muz[Nrays // 2:] = np.cos(theta)
self.wmu = np.zeros(Nrays)
self.wmu[:Nrays // 2] = quad[:, 0]
self.wmu[Nrays // 2:] = quad[:, 0]
self.wmu /= np.sum(self.wmu)
self.muy = np.sqrt(1.0 - (self.mux**2 + self.muz**2))
else:
raise NotImplementedError()
self.configure_bcs()
[docs]
def rays(self, muz: Union[float, Sequence[float]],
mux: Optional[Union[float, Sequence[float]]]=None,
muy: Optional[Union[float, Sequence[float]]]=None,
wmu: Optional[Union[float, Sequence[float]]]=None,
upOnly: bool=False):
'''
Set up the rays on the Atmosphere for computing the intensity in a
particular direction (or set of directions).
If only the z angle is set then the ray is assumed in the x-z plane.
If either muz or muy is omitted then this angle is inferred by
normalisation of the projection.
By convention muz is always positive, as the direction on this axis
is determined by the toObs term that is used internally to the formal
solver.
Parameters
----------
muz : float or sequence of float, optional
The angular projections along the z axis.
mux : float or sequence of float, optional
The angular projections along the x axis.
muy : float or sequence of float, optional
The angular projections along the y axis.
wmu : float or sequence of float, optional
The integration weights for the given ray if J is to be
integrated for angle set.
upOnly : bool, optional
Whether to only configure boundary conditions for up-only rays.
(default: False)
Raises
------
ValueError
if the angular projections or integration weights are incorrectly
normalised.
'''
if isinstance(muz, numbers.Real):
muz = [float(muz)]
if isinstance(mux, numbers.Real):
mux = [float(mux)]
if isinstance(muy, numbers.Real):
muy = [float(muy)]
if mux is None and muy is None:
self.muz = np.array(muz, dtype=np.float64)
self.wmu = np.zeros_like(self.muz)
self.muy = np.zeros_like(self.muz)
self.mux = np.sqrt(1.0 - self.muz**2)
elif muy is None:
self.muz = np.array(muz, dtype=np.float64)
self.wmu = np.zeros_like(self.muz)
self.mux = np.array(mux, dtype=np.float64)
self.muy = np.sqrt(1.0 - (self.muz**2 + self.mux**2))
elif mux is None:
self.muz = np.array(muz, dtype=np.float64)
self.wmu = np.zeros_like(self.muz)
self.muy = np.array(muy, dtype=np.float64)
self.mux = np.sqrt(1.0 - (self.muz**2 + self.muy**2))
else:
self.muz = np.array(muz, dtype=np.float64)
self.mux = np.array(mux, dtype=np.float64)
self.muy = np.array(muy, dtype=np.float64)
self.wmu = np.zeros_like(muz)
if not np.allclose(self.muz**2 + self.mux**2 + self.muy**2, 1):
raise ValueError('mux**2 + muy**2 + muz**2 != 1.0')
if not np.all(self.muz > 0):
raise ValueError('muz must be > 0')
if wmu is not None:
self.wmu = np.array(wmu, dtype=np.float64)
if not np.isclose(self.wmu.sum(), 1.0):
raise ValueError('sum of wmus is not 1.0')
self.configure_bcs(upOnly=upOnly)